The Linear, Non-linear Measurements, Analysis and Evaluation for the Design of Ultra-Wideband Low Noise Amplifier

نویسندگان

  • M. M. Khanapurkar
  • H. Karrari
  • H. F. Baghtash
چکیده

This paper exhibits an examination, configuration, design to measure nonlinear characteristics of low noise amplifier(LNA) furthermore investigation, assess those estimations in the AWR microwave office Tool. A large portion of the critical aspects of LNA will be in linear measurements and which is composed, designed and simulated for the ultra LNA from 3GHz to 10GHz. In this proposed work the methodology has made to address nonlinear and linear measurements to the restricted band LNA which be working in 820-960 MHz ISM band. The work provides the required information about LNA design by using two different advance measurement techniques. First techniques are by using two tone harmonic balance source input and second one is uses just by two port 50Ω lossless line. A simulation setup is made to measure the characteristics of LNA by using spectrum rectangular display type with power harmonic components. In this paper, three circuits schematic of the designed LNA are discussed with corresponding measurements. Finally, author designed ultra-wideband LNA from the bandwidth 3GHz to 10GHz and elaborates how nonlinear measurements changed the way of LNA design to validate and construction at higher frequencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Ultra-Wideband Low Noise Amplifier With Continuous Gain Control

This paper presents a new variable gain low noise amplifier (VG-LNA) for ultra-wideband (UWB) applications. The proposed VG-LNA uses a common-source (CS) with a shunt-shunt active feedback as an input stage to realize input matching and partial noise cancelling. An output stage consists of a gain-boosted CS cascode and a gain control circuit that moves the high resonant frequency to higher freq...

متن کامل

A High Gain and Forward Body Biastwo-stage Ultra-wideband Low Noise Amplifier with Inductive Feedback in 180 nm CMOS Process

This paper presents a two-stage low-noise ultra-wideband amplifier to obtain high and smooth gain in 180nm CMOS Technology. The proposed structure has two common source stages with inductive feedback. First stage is designed about 3GHz frequency and second stage is designed about 8GHz. In simulation, symmetric inductors of TSMC 0.18um CMOS technology in ADS software is used.Simulations results ...

متن کامل

Design of an S-band Ultra-low-noise Amplifier with Frequency Band Switching Capability

In this paper, an ultra-low-noise amplifier with frequency band switching capability is designed, simulated and fabricated. The two frequency ranges of this amplifier consist of the 2.4 to 2.5 GHz and 3.1 GHz to 3.15 GHz frequency bands. The designed amplifier has a noise figure of less than 1dB, a minimum gain of 23 dB and a VSWR of less than 2 in the whole frequency band. The design process s...

متن کامل

A Modified Noise Analysis of a Common Source ̶ Common Gate Low Noise Transconductance Amplifier for Sub-micron Technologies

This paper is based on analysis of a common source - common gate low noise transconductance amplifier (CS-CG LNTA). Conventional noise analyses equations are modified by considering to the low output impedance of the sub-micron transistors and also, parasitic gate-source capacitance. The calculated equations are more accurate than calculated equations in other works. Also, analyses show that th...

متن کامل

A New Compact Ultra-wideband Linear Antenna Array for Target Detection Applications

This paper presents a low-cost compact planar microstrip-fed monopole antenna and its four-element array design for ultra-wideband (UWB) wireless communication and target detection applications, respectively, operating in the frequency span of 3 GHz to 11 GHz. A prototype was fabricated and then measured based on optimal parameters. The results of reflection coefficient (S11) and radiation patt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017